

Product Name: Col QuantTM - Total Collagen Quantification Kit

Catalogue Number: BVCQ96

1. Product Introduction:

Accurate measurement of collagen is critical in fields such as fibrosis research, tissue engineering, wound healing, biomaterial development, and drug discovery. ColQuantTM Total Collagen Quantification Kit provides a robust, sensitive, and reproducible method to estimate total collagen by measuring hydroxyproline. The simple, microplate-based ColQuantTM Quantification Kit allows for high-throughput analysis and ensures accurate quantification with minimal hands-on time.

2. Assay Principle (Colorimeter, 560 nm)

Hydroxyproline is a primary, post translationally modified amino acid of collagen, making its presence a definitive marker for the protein. The sample is initially hydrolysed to release free hydroxyproline (HYP). The released hydroxyproline then undergoes oxidation in the presence of an oxidizing agent to form a stable product. This oxidation product subsequently reacts with a chromogenic reagent yielding a reddish-purple complex. The hydroxyproline concentration is then determined by measuring the optical density (OD) at 560 nm.

3. Key Features & Performance

Feature	Specification				
Assay Type	Colorimetric (microplate, endpoint)				
Readout	Absorbance at 560 nm				
Sensitivity	As low as 0.05 μg Hyp/well (typical)				
Linear Range	0.2 – 1.0 μg Hyp/well (typical)				
Assay Time (post-hydrolysis)	≈ 60–90 min				
Samples	Tissue lysates, cultured cells/ECM, serum, plasma, urine				
Applications	Total collagen quantification; fibrosis and ECM studies; biomaterial validation; wound-healing models				
Format	96-well				

4. Kit Components

Component	Qty	Storage		
Reagent 1	10mL x 1 Vial	2-8°C, 12 months		
Reagent 2	2 mL x 1 Vial	2-8°C, 12 months		
Reagent 3	8 mL x 1 Vial	2-8°C, 12 months		
Reagent 4	40 mL x 1 Vial	2-8°C, 12 months		
Reagent 5	50 mL x 1 Vial	2-8°C, 12 months		
Reagent 6	50 mL x 1 Vial	2-8°C, 12 months		
Standard	5 mg x 1 Vial	2-8°C, 12 months		
96 well plate – Standard Clear	1	RT		
Bottom				
Plate Sealing Film	1	RT		
Technical Data Sheet	1	-		
Certificate of Analysis (CoA)	1	-		

Note: Reagents must be stored strictly under the preservation conditions specified in the table above, and reagents from different kits should not be mixed. For small-volume reagents, centrifuge briefly before use to ensure sufficient recovery of the reagent.

5. Technical Specifications

Parameter	Details				
Catalog No.	BVCQ96				
Wavelength	560 nm				
Required Equipment	Microplate reader (560 nm), dry heat block/oven (120 °C, 65 °C)				
Hydrolysis	Acid (6 N HCl) hydrolysis prior to assay				
Sample Types	Tissue, cell lysate/ECM, serum, plasma, urine				
Shelf Life	12 months at recommended storage				
Compliance	Research Use Only (RUO)				

6. Materials and equipment required but Not Supplied

Instruments

- Autoclave
- Vortex mixer
- Centrifuge
- Water bath
- Microplate Reader capable of reading 560 nm

Reagents

- 6N NaOH
- 6 N HCl

Reagents preparation

Equilibrate all reagents to room temperature before use.

• The preparation of 1 mg/mL HYP standard

Dissolve one vial of HYP Standard with 5 mL of double distilled water. Mix well to dissolve. Store at 2-8°C for 15 days.

The preparation of 100 μg/mL HYP standard

Dilute 40 μ L of a 1 mg/mL HYP standard solution with 360 μ L of double-distilled water and mix thoroughly. The 100 μ g/mL HYP standard should be freshly prepared prior to use.

The preparation of Oxidant working solution

Dilute Reagent 2 and 3, mix well to dissolve. Store at 2-8°C and protected from light.

The preparation of standard curve

- Always prepare a fresh set of standards and discard working standard dilutions after use.
- Dilute 100 μg/mL standard solution with double distilled water to a serial concentration.
- The recommended dilution gradient is as follows: 0, 1, 3, 4, 6, 8, 10 μg/mL.

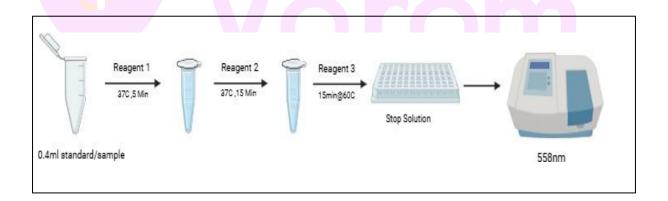
Reference is as follows:

Item	1	2	3	4	5	6	7
Concentration (µg/mL)	0	2	3	4	6	8	10
100 μg/mL standard solution (μL)	0	20	30	40	60	80	100
Double distilled water (μL)	1000	980	970	960	940	920	900

Sample Preparation

Collagen: Hydrolysis of Collagen Samples (Example)

- Weigh 3 mg of sample collagen and 3 mg of pure collagen separately using an analytical balance and transfer each into a clean 5 mL glass vial.
- Add 1 mL of 6N HCl to each vial to obtain a concentration of 3 mg/mL.
- Close the vial caps gently (do not overtighten).
- Autoclave (hydrolyze) the samples at 121°C for 60 minutes.
- Allow the samples to cool at room temperature for 1-2 hrs.


Neutralization

- Neutralize each hydrolyzed sample with 6N NaOH until the pH reaches neutral (≈7.0) to prevent further amino acid degradation.
- Adjust the final solution volume to 2 mL, resulting in a 1.5 mg/mL concentration.
- Store the neutralized solutions at 4°C until further use.

7. Operating Steps

- Standard tube: Add 400 μL of each standard solution prepared earlier with different concentrations and add to a separate 2 mL tube.
- Sample tube: Take 400 μL of sample to the 2 mL EP tube.
- Add 100 μL of Reagent 1 solution to each tube.
- Add 100 μL of oxidant working solution to each tube.
- Mix fully and stand at room temperature for 15 minutes.
- Add 400 μL of chromogenic working solution to each tube.
- Mix fully and incubate the tubes at 60°C for 15 minutes.
- Cool the tubes to room temperature with running water, then transfer the contents to a 96 well plate.
- Measure the OD value of each well at 560 nm with a spectrophotometer.

8. Calculations

Hydroxyproline and Total Collagen Calculations:

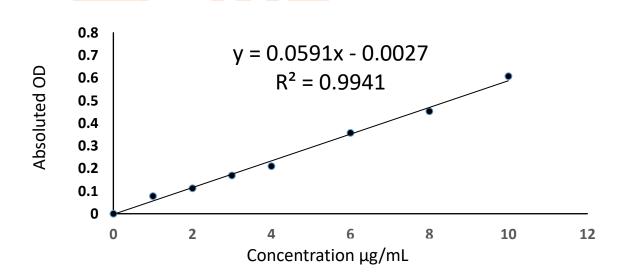
 Calculate Hydroxyproline in Samples Sample Hyp (μg/well):

Sample Hyp = (Interpolated value from the standard curve) \times f

Where:

- Interpolated value = Hydroxyproline amount corresponding to the sample OD based on the standard curve.
- f = Dilution factor applied to the sample before testing.

2. Estimate Total Collagen


Collagen (µg/well):

Collagen = sample Hyp \times Conversion factor

Where:

• Conversion factor = 7.46 (typical value), with an acceptable range of 7.14-7.69 depending on tissue factor.

Standard Curve:

9. Storage & Safety

Store the kit at -20 °C (Developer at 4 °C). Protect DMAB and Chloramine-T from light. Handle all reagents with standard PPE; follow local regulations for disposal. RUO—Not for diagnostic use.

10. Contact Information

BIO VARAM

Suit 19, ASPIRE-BioNEST, School of Life Sciences University of Hyderabad, Gachibowli, Hyderabad 500046, India

Solution Sales@uratpx.com | ⊕ www.uratpx.com | **2** +91 9154254190

For Research Use Only.

